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ABSTRACT 

Several limit theorems analogous to Hopf's ergodic theorem (but where the 
usual ratio is replaced by conditional expectation with respect to certain sigma- 
fields) are proved and applications to probability theory are given. 

1. The problem 

Classical ergodic theorems concern averages of iterates of functions under 

operators derived from measure preserving transformations. This article is 

devoted to a study of averages of conditional expectations of such iterates. Besides 

having independent interest, these results are applicable to ratio-limit theorems 

in probability theory. 

Let (f~,E, Tz) be a a-finite measure space, T a one-to-one invertible measure- 

preserving point transformation, and E( �9 I A) the conditional expectation operator 

on LI(I),E,n) where A is a sub a-field of E, a-finite with respect to n. To see the 

problem in its simplest setting, let T be conservative and ergodic and rc(f~) = 1. 

Let T also denote the operator on L 1 defined by (Tf)(co) = f(T~). For positive 

f e  L~ the ergodic theorem shows 

(1.1) E f = E  l imn -1"  ~ TkflA < l i m i n f E  n - t .  ~ IA 
\ n - - "  o0 k = l  n ' ~  \ k 

and 

(1.2) El imin fEn- ' .  k~== TkflA ~ liminfE..~o , E ( n - ' ' ,  ,=,~ Tt'flA = Ef. 
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Take the expectation of both sides in (1.1) and combine with (1.2) to obtain 

However, Professor D. L. Burkholder has pointed out that the construction in 

[1, p. 888] produces an f and a A where 

f must be unbounded for (1.3) to hold, otherwise the dominated convergence 

theorem and the ergodic theorem give a trivial proof of the convergence of the 

conditional expectation of the iterates to the constant El. 

The general question, then, for a conservative, ergodic transformation T, a 

a-finite measure re, and a-fields A and A both a-finite with respect to ~, is: find 

conditions under which 

(1.4) E(~ 1T'fIA )/E(k~=, Tkg IA)= h.(f,g,A.A)-+ E~ a.e.(,) 
for f ~ L1 and g > 0 in Lt, Eg > 0. The example above shows that, although 

by Hopf's theorem 

/ = 1  k ~ l  

some restriction is already necessary even in the case of finite n. 

In Section 3 a few theorems are proved whose conclusion states that (1.4) holds. 

But the most useful and interesting result is Theorem 3.5 in which the convergence 

obtained is not a.e. but only in measure. It is this theorem which has a particularly 

valuable application to Markov processes given in Section 4. 

2. Notation and assumptions 

We consider the background described at the beginning of the second paragraph 

of the preceding section. Restrictions which are to hold throughout Section 3 

will now be imposed and certain notation defined. 

Our basic restriction is on the type of a-field A considered. 

DEFINITION. A a-finite a-field A (with respect to ~) is admissible if TA c A. 

(TA is the a-field defined by: E e TA if and only if T - I E  e A). 

For any integer k, TkA is a a-field defined in the obvious way and is a sub- 
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a-field of ~. a-finiteness of A and the one-to-one measure preserving property of 

T imply a-finiteness of T~A. If A is admissible, {TkA, k > 0} is a decreasing 

sequence of a-finite a-fields with l")k_~o T kA = A*, but A* need not itself be 

a-finite (and in the most interesting cases will not be). 

Take f e L l ( n ) ,  A admissible, and k _~ 0. Set TkA = A k (Ao = A) and 

f t  = E(f] Ak). f~ is a backward martingale with respect to Ak (see [10]). If A* is 

a-finite, lim~-,oofk = E(fIA*) a.e., if A* has only sets of trivial measure, 

l i%_.~f k = 0 a.e. ([4], [14]). A-measurability of f implies T-kA measurability 

of Tkf;  an easy computation using the invariance of T under n shows 

(2.1) T'E(fl A) = E(Tkf l  T-kA) 

for any integer k. Thus we may write 

(" ) 
Our assumptions which hold throughout the paper are as follows. 

(I) Only admissible a-fields are considered. 

(II) T is conservative, that is, the dissipative part is n-null [5]. 

(III) Tis ergodic, that is, the a-field of invariant sets ( T - t E  = E up to 

equivalence) is trivial. 

(IV) rr(f/)= co. 

(V) In ratios of the form (1.4), f ~  Lt and g ~ 0 is in Lt with EO > O. 

Some of these restrictions are made simply to focus on the interesting questions 

and to avoid long-winded comments about trivial cases. 

3. Main results 

Recall the restrictions (I)-(V) imposed in the preceding section. 

THEOREM 3.1. Let  A = A in (1.4). Then (1.4) is true. 

PROOF. Define a transformation S by 

S f  = E ( T f  I A). 

$ is an L 1 operator of norm 1. Admissibility, (2.1) and properties of conditional 

expectation show 

sV = r ' e ( f  I A,)= T'A. 

Then 
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converges by the Chacon-Ornstein theorem [2] proving the convergence of the 

ratio in (1.4). The limit can be identified from [3]. 

THEO~M 3.2. Let NRgoTkA----A* and Nk~oTkA-----A * both be (x-finite. 

Then (1.4) is true. 

PROOF. TA* ~ TA, = An+ 1 for each n, and then TA* c A*. Similarly, 

T-1A* ~- A*. Therefore TA* = A* and also TA* -- A*. Let u and v be non 

negative functions in L1 measurable with respect to A* and A* respectively. 

It follows from the preceding that Tku and T~v are measurable with respect to 

A* and A* respectively for each integer k. Then 

hn(f, g, A, A) = hn(f, u, A, A).  hn(u, v, A, A)" hn(o, g, A, A). 

The first and third terms converge to Ef/Eu and Eo/Eg respectively by Theorem 

3.1, and the middle term is simply 

which converges to Eu/Ev by Hopf's theorem. The proof is complete. 

Recall that A k = TkA for any integer k and that TRuk_i "~ E(TkulA-1) for 

u ~LI  (see 2.1). 

LEMMA 3.3. f f  

(( )) (3.1) lim ~ Tkuk_t Tktlk = 1 a.e. (n) 
n ' . . ~ r  \~,k=l 

for some u >_ 0 in L l, then (1.4) holds for A = A, and A -- A~, r and s fixed 

integers. 

PRooF. In each of the sums below, the summation is always on the index k 

from 1 to n, and r and s are fixed integers. We have 

Z T~A- t Z T~A _ i Z Tkuk- i Z Tku, 
Z Tkgk Z Tkuk - l Z Tkuk Z Tkgk 

The first and third terms converge by Theorem 3.1, and the middle term tends 

to 1, proving the lemma if r = - 1, s = 0. 

I f s = r + l ,  wehave 
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T h e n  

(3.2) 

Tkfk+, 
hn(f ,g,A, ,A,)  - )..Tkgk+, �9 

T '+lhn(f ,g ,A, ,As)  = 

Tkf,+, 

Y~ T*gk+, - 

each term converging 

immediately. 

Y~ Tk( T'+ xf)k- 1 
E Tk(T "+ lg)k+:-r- 1 

E Tk(T "+ l f ) k -  1 
y. Tk(T,+ lg)~ 

Ef 
Eg 

ET,+I  f 
. . +  - -  

ET" * I g 

by the preceding, and then h~(f, g, A,, As) itself converges by applying T -( '+ ~) to 

each side of (3.2). In the general case, when s = r + a, a > 0, say, 

~ Tkfk+_,. Z Tkfk+,+ 1 Z Tkfk+,+~-i 

Z Tkfk+,+l E Tkfk+,+2 " Z Tkgk+, 

by the preceding, and the desired conclusion follows 

THEOREM 3.4. Each one of the following conditions is sufficient for (1.4) to 

hold for r and s f ixed integers, A = A,, A = As: there exists u > 0 in Lt n L 2 

I I E sup l u~ - uk- i  I < oo, 
k~O 

such that 

(3.3) 

( ' )  (3.4) l iminfn - t  Y_, Tku > 0 a.e.(r0, 
n-'* oo \ k = l  

(3.5) l iminf n-  �89 Tkuk > 0 a.e. (n). 
n ~ e  k = l  

PROOF. {un} is a backward martingale with respect to {A,, n > 0} and the 

martingale differences {u, - un-1} are orthogonal. Thus 

Uo = u~ + (un-~ - uD + (u~ -2  - u , - 0  + '" + (Uo - u l )  

so that, for all n 

(3.6) ~ Eluk- -Uk_  1 = = -- = - -  I s E l . o - . . I  s E . g  ~ . ~  < E . o  ~ _< E . '  < oo 
k = l  

by properties of conditional expectation and the fact that {uo, u} is a submartin- 

gale with respect to {A, I2}. Hence the series Y| EI.~- uk- 1 [2 converges, and 
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by the measure-preserving property so does the series ~ = ,  ~ E iTk(u~ - u ~ - l )  2 I. 
Then ~ = 1  | T~(u~ - u~_ 1) 2 converges a.e. (it). By the Cauchy-Schwartz inequality 

k = l  k : l  

and by the above, this implies 

(3.7) n - t "  r ' lu , -u ,_ , l ->o.  
k = l  

Divide (3.7) by n - �89  ~=~ Tkuk. Under (3.5) the result of  this division tends 

to zero and Lemma 3.3 can be applied to obtain the desired conclusion. (3.4) easily 

implies (3.5) by taking conditional expectation and using Fatou's  theorem, so 

again the conclusion follows. To prove sufficiency of  (3.3), observe that Hopf 's  

theorem yields for all s ~ I 

0/(= ))( lira T k sup I uj  - u 1_ t Tku = E sup I ul - u.t- l u. 
. - - , ~  k=s j~'s k J~8 

Without loss of  generality, A* may be assumed to contain sets only of measure 

zero or 0% for one may extract a largest invariant, a-finite part of  A* on which 

Theorem 3.2 applies. Then lim._.| u. = 0 a.e. and by (3.3) 

lim E sup I uj - u j_ l [ = O. 
8 " 0 o  J ~ : l  

The divergence of the denominator yields 

lim...sup ((k~]=, Tllul'-ui-il)/k~iT~<u ) 

lim lim ((h~ Tk sup lu,-u,_,Ol( ]~ TkU))=0. 
s-~ n--~ oo = l  J i ; I  k = t  

It follows that 

(3.8) 

)ira ((1+ Ik~x T"(u~'--uk-')] +)/(.~, Tku)) 

(( }) /("  )) -- ,,--.=lira I + ~:, Tk(U, - u,_ ,) k ~, T'U = O. 

For each N, 
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(3.9) ~ i n f  ((~= Tku,_,)/(1 + [.~,T'(u,--U._l)] + ) )  

and the monotone convergence theorem with (3.8) shows that the right side of 

(3.9) converges to oo as N--, oo. A similar argument about the negative part 

proves (3.1), and so Lemma 3.3 applies. The proof is complete. 

THEORrM 3.5. Let f ~ L t. Suppose there exists an increasing sequence of 

positive constants h~ tending to go with 

limsup ( ( ~ , _ . o o  g l Tkfk)/hn) <OO a.e. Qr) (3.10) 

and 

(3.11) n-.~o l im((~=lTkfk)/hn~)=oo a.e. (n). 

Then if ct is a finite measure equivalent to re, and r and s are fixed 

(3.12) lira E IA, E ~ TkglA, =--~# in or-measure. 
n " * ~  k = l  

Consequently, in the notation of (1.4), given any sequence (n~}, there is a further 

subsequence {mi} with 

hm~(f, g, A,, A~) --, 

I f  (3.10) and (3.11) are replaced by 

(3.10') 

and 

E f  a.e. (r 0. 
Eg 

,,m((/ 
P/"~ CO = 1  

a.e. (n) 

respectively, then (3.12) is still valid. 

PROOF. Notice that by Theorem 3.1, if (3.10) and (3.11) are true for any f e L l ,  

they are true for all f e  LI. Let f = la be the indicator of a A-measurable set of  

finite measure. Recalling that Tkfk is A-measurable, and Tkfk_ 1 is A_ 1 measurable 

for each k, by admissibility and properties of conditional expeztation we have, 

f o r l _ _ < j < k  
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F.TJfjTkA_I ~- E(F.(TJfjrkfk_l IA)) -~ ETJfjE(T~A_x [A) -- ETJfjTkfk. 

Using the invariance of the integral this implies 

(3.13) ETJ(fj - fy_l)Tk(fk -- fk-~) = ETJ-~fj-xTk-~fk-x -- er fjr f . 
Now we compute 

E(~= T'(fk--fk_l))2= E( ~=, Tk(fk--fk_l) 2) 
(3.14) + 2 ~, ETJ(fj - A - , ) .  l~_j<k~_n 
The first term on the right of(3.14) converges by (3.6) and the second term is easily 

seen to be 

by (3.13). Thus 

(3.15) E Tk(fk --A-t) ~ C+ 2E(T~ Y. TJfj = c +2 TJfj, 
k = l  \ 1 = 1  j = t  

where c is constant. Without loss of generality, we may assume 

(3.16) 2 ~,~ < L < m 

everywhere on A for n > N, N taken large enough. This follows by (3.10); for 

then (3.10) holds on a subset B c A of positive rc measure for n __> N. Replacing 

all of the above arguments with # = 1B, the last term on the right in (3.15) gives 

jffil 

and (3.16) holds everywhere on B. Hence we may and do assume (3.16) is true 

on A. 

For ~ > 0 fixed, define 

Un ---- {(~=tT'(fk--fk-1))2 >-- 8(k~=l Tkfk)2}. 

By (3.15) and (3.16) 

(3.17) ~ .  ((k~, Tkfk) 2/h") ~- E(k~=, Tk(fk - - f k - t ) ) 2 / h n < ( L + l ) n ( A )  

for large n. Moreover, for fixed 2 > O, set 
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> ((L + l)n(A))2 -1 for n > m]. s.: {( 

Then (3.17) implies n ( S  m I'~ Un) < 2/~, for n > m. Let ct be equivalent to n and 

finite. By (3.11), m can be taken so large that on S ' ,  the complement of Sin, 

ct(S') < 6 whatever 2 is; in addition 2 may be taken so small that by absolute 

continuity ct(Sm n U.) < 6. Thus ~(U.) < 26 for all large n. Since 6 is arbitrary 

ct(U.) ~ 0, that is 

rkfk_,  ~ 1 in s-measure. 
k = l  

A simple adaptation of Lemma 3.3 yields the desired conclusion. If (3.10') and 

(3.11') hold, (3.17) reduces to (for large n) 

aen(U r3U.) <=5 TkA h. < E T ~ ( A - A _ I )  h. --, 0 
r~U. k=l  =1 

for some ~ > 0 and for arbitrarily large U with rr(U) < oo. Again, this implies 

~(U.) --, 0 and the proof is concluded as before. 

REMARK. If h. = n, (3.10') automatically holds by the ergodic theorem when 

7r(f~) = oo. If (3.11') holds for h. = n, then we are in the situation (3.5) of 

Theorem 3.4 and obtain convergence a.e. Thus Theorem 3.5 can be viewed as a 

generalization of  Theorem 3.4. 

4. Application to probability theory 

Markov processes 

Let { X . , - o o < n <  +oo} be a Markov process on a state space S with 

stationary transition probabilities P"(x, E) = P(X. ~ E [ Xo = x) and a-finite 

stationary measure 2. We assume the process is recurrent in the foUowing sense; 

the process satisfies condition B which states that 2 ( E ) >  0 implies P ( X . e E  

infinitely often ]X 0 = x) = 1 a.e. (4) on S. 

A stronger, related condition is that of Harris [-6]: Condition C is the same 

as Condition B except that the phrase "a.e. (4) on S "  is replaced by "for  all 

x e S" .  Condition C will not be assumed unless explicitly stated. 

2 induces a measure n in a natural way on bilateral coordinate space (with 

product a-field); that 2 is stationary entails the invariance of n with respect to the 
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shift transformation T (see, for example, [-7]). This is the key correspondence 

relating Section 3 to the theory of Markov processes. Condition B is equivalent 

to the statement that T and rr on coordinate space satisfy (II) and (III). 

Let A = ~ ( . . . X - 1 , X o )  where 8 ( . )  is the a-field generated by the set of 

random variables in parenthesis. Then TA = ~ ( . . . , X - 2 , X - I ) c  A and A 

being a-finite, is admissible. A* = z-~o is the left tail a-field of the process. 

Let f = lxo ~ E, the Xo-indicator of a set E, 0 < 2(E) < oo. Then 

(4.1) Tkfk = E(r ' fIA)  = E(T f] ...X_.So) = e(lx oElXo) = e (Xo, E) 
by the Markov property (see also [10]). We then have for r > 0 

From [11] it follows that 

lim inf • Pt(Xo(cO ), E) = constant a.e. (zc) 
n ~ o o  \ \ k = l  

for each fixed t, E, when Condition B holds. A similar result can be proved for 

lira sup. From Theorem 3.5 we obtain Theorem 4.1. 

TrmOl~M 4.1. I f  for  some t ~ S, we have a.e. (rr) 

)i(k," )) 0 < lira inf pk(X0, E) (t, E) 
n ....~ oo = 1  

(4.2) 

O) ___< lira sup pR(Xo, E k(t,E < oo 
n ' - *  oO . 1 

then 

(4.3) lim P'<(X o, E) pk(x, ,  F) = -~(F) in (~) measure, 
n--* oo \ \ k = l  1 

for  each fixed integer r, where r is a finite measure equivalent to rt, and E and 

F are sets with 0 < 2(E), 2(F) < oo. Consequently, there is a subsequence {m j} 

for  each given sequence {ni} with 

(4.4) ((k~=JIPk(Xo, E))/(k~=JIIY'(X,,F))) - 2(E) 
2(F) a.e. (~). 

PROOF. Putting h~ = Y~,=IP~(t,E) in Theorem 3.5 we have (3.10) and (3.11) 

holding. Then (4.3) is simply (3.12) in a particular case. 
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x e S, put vx( " ) = E~$ I ~'~ pk(Xl " )" For 

COROLLARY 4.2. I f  (4.2) holds,for each sequence {hi} there is a further sub- 

sequence {m j} with 

)i(.':, )) (4.5) lira P'(x, E) pk(y, F) - 2(F) 
j - - , ~  1 

for  almost all y(vx) for all x in a ).-full set. 

PROOF. As co ranges through a n-full set, Xo(tO) ranges through a ).-full set of 

x and then X,(o)) for fixed r ~ 1 ranges through a P'(x, �9 )-full set of y. Hence 

for almost all x(2), by taking a diagonal subsequence, (4.3) holds for all r > 1, 

and so (4.5) holds for almost all y(v~). 

THEOREM 4.3. Let ~ = l P k ( t , E )  ~ oo where 2(E) > 0. Suppose, for  some x, 

(( )1( )) (4.6) lira inf ~, P~(x,E) Pk(t, E) = O, 
n"* oa \ \ k : l  k 

then there is a subsequence {mi} with 

)1( )) (4.7) lira P~(y, E) P~(t, E) = 0 a.e. (v,), 
J-- ,  oo k =  

and there is a decreasing sequence of sets E~ c E with v~( ntE~) = 0 and 

((k," )) (4.8) lira sup (t, Ei) Pk(t, E) = 1, 
n"* oO 1 

for  all i. 

PROOF. By hypothesis there is a subsequence {hi} such that, for each fixed r, 

/ . l+ ,  \ 

: 

The sequence in the integrand converges in L1 to zero with respect to P'(x, �9 )- 

measure. Use the diagonal method to find a subsequence, say {ms}, converging 

a.e. P'(x,  �9 ) for all r, hence converging to zero a.e. (v:). Now define 

F~ (x, E) = P(X s ~ E; X t ~ A, 0 < i < j I So = x), k 2 2 

= e ( x , E ) ,  k = 1 
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oo 

Z F~ (x, E) = eA(x, ~). 
J = t  

I f E  c A, PA(x,E) < 1 and is the expected number of visits to E in one visit to A, 

starting from x (see [12, p. 645]). Let 8 > 0 be given and let At be an increasing 

sequence of sets converging to a vx-full set on which the ratio in (4.7) becomes 

and stays lesss than e for large enough mj. Then, by [12, p. 646], for any fixed Al 

mj [~ rttj-- | [ mj--k  I mj 
(4.9) E P'(t,E) = | Z {F~,(t, dy) E P'(y,~] + Z F~,(t,E). 

/=I dAt  k=It 1 = 1  I = 1  

Dividing and going to the limit shows 

((7, Ol('f: O) 1 < ~ + lim sup F~,(t,E t (t, E 
j ~ c o  / = 

((-., )) = ~ + lim sup E F~,(t, E - AD P~(t, E) 
j---, co \ \ 1 = 1  1 

(f-' )) < ~ + l imsu p  E P~(t ,E-  At) P(t,E) . 
j--* oo \ \ 1 = 1  l 

Since e is arbitrary, this proves the theorem when we put E~ = E - At. 

Theorem 4.1, its Corollary 4.2, and Theorem 4.3 can be used in conjunction to 

prove (4.3) and (4.5) under very general conditions. The key relation one must 

show is (4.2). It is not difficult to see that all random walks on the line satisfying 

Condition B also satisfy (4.2). If  Condition C is known to hold, it is possible to 

use our results to prove 

(4.10) k=,~ Pk(x' E) k~, pk(y, F) X(F) 

for all x and y in a ).-full set, when 0 < 2(E), X(F) < oo. This is a result of Jain [13I. 

Proving this in detail now would be tedious, but we sketch a proof of this theorem" 

under Condition C vx-null sets are X-null for all x. Thus if (4.6) holds, there is a 

sequence {E~} decreasing to a ).-null set, El c E, with (4.8) holding. According 

to [9, Th. 1], this can only happen for t on a fixed X-null set (when E is fixed). 

(The proof in [9"1 depends, however, on the ratio-limit theorem (4.10), but an 

independent proof may be given of this fact). From this it will follow readily 

that (4.2) is true for almost all fiX). Thus the assertions of Theorem 4.1 and its 

Corollary 4.2 hold; this gives convergence of subsequences in (4.5) for all x and y 



374 R. ISAAC Israel J. Math., 

in a k-full set. Once convergence on subsequences is known, it is not difficult to 

show convergence over the entire sequence. 

Strictly stationary processes 

This example is more general than the preceding. We consider processes whose 

finite dimensional measures (that is, distributions)are invariant under time shifts. 

The measures are permitted to be o-finite. Such processes provide the most 

general probabilistic examples for which the results of  Section 3 hold when 

T = the shift transformation. 
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